True Path Rule Hierarchical Ensembles

نویسنده

  • Giorgio Valentini
چکیده

Hierarchical classification problems gained increasing attention within the machine learning community, and several methods for hierarchically structured taxonomies have been recently proposed, with applications ranging from classification of web documents to bioinformatics. In this paper we propose a novel ensemble algorithm for multilabel, multi-path, tree-structured hierarchical classification problems based on the true path rule borrowed from the Gene Ontology. Local base classifiers, each specialized to recognize a single class of the hierarchy, exchange information between them to achieve a global “consensus” ensemble decision. A two-way asymmetric flow of information crosses the tree-structured ensemble: positive predictions for a node influence its ancestors, while negative predictions influence its offsprings. The resulting True Path Rule hierarchical ensemble is applied to the prediction of gene function in the yeast, using the FunCat taxonomy and biomolecular data obtained from high-throughput biotechnologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted True Path Rule: a multilabel hierarchical algorithm for gene function prediction

The genome-wide hierarchical classification of gene functions, using biomolecular data from high-throughput biotechnologies, is one of the central topics in bioinformatics and functional genomics. In this paper we present a multilabel hierarchical algorithm inspired by the “true path rule” that governs both the Gene Ontology and the Functional Catalogue (FunCat). In particular we propose an enh...

متن کامل

An Experimental Comparison of Hierarchical Bayes and True Path Rule Ensembles for Protein Function Prediction

The computational genome-wide annotation of gene functions requires the prediction of hierarchically structured functional classes and can be formalized as a multiclass, multilabel, multipath hierarchical classification problem, characterized by very unbalanced classes. We recently proposed two hierarchical protein function prediction methods: the Hierarchical Bayes (hbayes) and True Path Rule ...

متن کامل

Notes on hierarchical ensemble methods for DAG-structured taxonomies

Several real problems ranging from text classification to computational biology are characterized by hierarchical multi-label classification tasks. Most of the methods presented in literature focused on tree-structured taxonomies, but only few on taxonomies structured according to a Directed Acyclic Graph (DAG). In this contribution novel classification ensemble algorithms for DAG-structured ta...

متن کامل

On predicting rare classes with SVM ensembles in scene classification

Scene classification is an important technique to infer high-level semantic scene categories from low-level visual features. However, in the real world the positive data for many scenes may be rare, which degrades the performance of many classifiers. In this paper, we propose SVM ensembles to address the rare class problem. Various classifier combination strategies are investigated, including m...

متن کامل

Comparison of Standard Resampling Methods for Performance Estimation of Artificial Neural Network Ensembles

Estimation of the generalization performance for classification within the medical applications domain is always an important task. In this study we focus on artificial neural network ensembles as the machine learning technique. We present a numerical comparison between five common resampling techniques: k-fold cross validation (CV), holdout, using three cutoffs, and bootstrap using five differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009